

An earth science class at Thailand science high school based on the natural disasters

(earthquakes and active volcanoes)

Yoshio Okamoto (Kamnoetvidya Science Academy, Thailand, Visiting Teacher) yossi.okamoto@gmail.com

About KVIS

G05-P01

KVIS (Kamnoetvidya Science Academy) Rayong, Thailand (right: map and photo) **Purpose**: Nurturing a new generation of scientist and researchers

Open: August 2015, Princess Sirindhorn graced

Organization: RASA Foundation (PTT Group) Principal: Dr. Thongchai Cheprecha

Full Scholarships: including all meals and accommodation

Students: 18 students \times 4 classes \times 3 grades **Teachers**: about 40 (Foreign 10+)

Official Language: English (except Thai subject)

Facilities: IT black-board, SEM, UV-VIS spectrometer, 3D printer, NC milling & lathe machine,, ICT Lab. Feature: Experiments and observations based class, study projects, cultural act.(play, music, sports etc Foreign exchange students, International science fair, Foreign and domestic visitors and researchers **Misc**: A half of teachers has Ph.D, Paper & practice based entrance exam. Top score level students.

About Earth Science (ERS) at KVIS

Background: A minor subject at senior high school level, also even at junior high level. **Issue**: Focus on two months; only target on SOLID EARTH (Meteorology and Astronomy are omitted) Contents: Minerals, Rocks, Geology, Earthquakes & Volcanoes to Plate tectonics, Geo-history Basic course (August) + Advanced course (September): The latter treats high level contents. **Purpose**: To give the philosophy of Earth Science to the Thai students who will become scientist. **Features**: Thailand lacks earthquakes and volcanoes except severe floods. However, we introduced earthquakes and volcanic eruptions (Japan and the world) to talk global tectonics and geo-history. Point: Showing real rocks and fossils, experiments, observations and excises based.

Co-operation: That chemistry teacher, Dr. Janjira Maneesan, as a counterpart (CP) of the author, attended class all time, helped me and took videos (The left side women in the right photo).

Earth Science Olympiad: Mr. Kanathip Tan Jongmekwamsuk (M6 student) got the silver medal 2017. About Author: Recruited by KVIS at TJ-SIF2016 accidentally. The first time to lecture foreign students in English!

About the Tohoku2011 and

the 1995Kobe earthquakes

About the Zip's law or power laws

About Our existence—chance

(randomness, accidentally) or

necessity (lawful consistency)?

(Any format is welcome, short story

SF, animation or something else)

Evaluation & Discussions

Our ERS class was finally evaluated by the exam scores and the questionnaire results. (Recovery rate of questionnaire: 69%)

The final exam level: Same as a Japanese SSH level (choice 60% describe 40%) The final exam score histogram (right upper figure, 100 points conversion):

-> Seems to be a similar distribution in my SSH in Japan.

The final questionnaire results (right lower figure), the 1st Qst results are omitted. Free described: Most impressive topic? (fields, number)

Earthquakes related Dinosaurs and fossils (including Paleontrogy) Climate change (including "snowball earth") Rocks and minerals Mathematical models Volcanoes and eruptions

The student reaction seems to be positive for our ERS class as a whole. The volcanic eruption and related fields does not inspire Thai students strongly, although the spending much video watching or detailed explanations. On the other hand, the interest for earthquakes was still high level. This is because, a lack of active volcanos in Thailand, we only used videos, while with many exercises, as earthquake related materials our own made. Also, we had a special lecture about 1995 Kobe and 2011 Tohoku earthquakes.

The further study will treat severe floods or tsunamis common in Thailand.

A couple of students told me the lecture was very impressive.

Q4. My lecture ERS PPT (compared with the beginning) not easy to become difficult to no comment Q5. My lecture level [is] (compared with the beginning) O6. Your final evaluation of my ERS lecture i

Lecture Topics & Assignments

Target: M6 students; 4 periods/week x 4 classes = 16 ps/w Contents Left Table: Basic course Right Table: Advanced course

All 32Topics, Purple: Exercises, Red: Reports & Exam. Room: Classrooms instead of science labs.

Lecture: PPTs and resources **Textbook**: In the library **Exp. & Obs.**: Earthquake epicenter, magnitude, G-R law,

Fault exp., Basalt NRM, etc. (see right photos) Controversy titles: Earthquake prediction,

Dinosaur extinction, Climate changes **Reports**: 3 times reports (right table)

Final score: exam.(70)+attendance(10)+reports(20)[%]: Completed by CP teacher

	Title	Aim	Contents	Tools/materials	Exercises		Title	Aim	contents	tools/materials	exercise
1	Rock Minerals	Definition of SiO ₄ families:	quartz, feldspar, mica, etc.	Mineral samples and photos	Observation of samples	19	Earthquake prediction I	Why so difficult? G-R law	G-R laws example, simulations of earthquakes	Semi-log and log- log graph papers, PC	"Go-game model", "Sand- pile model"
2	Rock Minerals	Identification of SiO ₄ families:	Metal ions, solid- solution	Minerals Rock samples	Mineral quiz	20	Earthquake	Precursors?	·	simulations	Random test,
3 4	Igneous Rocks I Igneous Rocks II	Definition of igneous rocks Occurrence or igneous rocks	Table felsic acidic, volcanic, plutonic Dikes, sheet, batholis, xenotith	Polished igneous rock samples, lgneous rock samples, photos	Igneous rock quiz quiz	20	prediction II	Characteristic earthquakes?	Earthquake prediction and time-predictable model	Psychological bias, Chikura map and graph sheet,	Time-predictable model
5	Volcanoes and eruptions	Classification relation with	volcano classification table	National geographic videos,	Mt. Fuji summit	21	Complex systems I	What is ?	Power laws and Zipf·s law	Fortune global 500 table	Zipf [,] s law exercise
	T i	igneous rocks		and protractor	measurement				<2nd ERS report>		
6	Volcanoes and eruptions	Eruption types and volcano disasters	Hawaiian, Stronbolian, Vulcanian, Pliniyan	Volcanic ash samples (Kanto roam, A/T ash)	Microscope observation of volcanic ashes	22	Complex systems II	Fractals, Chaos, SOC	Cell automaton	Grid sheet, rule table	1-dimensional cell exercise
7	Earthquake I	How to read seismograms	Hypo-center, magnitude (Richter scale)	Seismograms, map, magnitude nomogram	Original seismograms exercise	23	Earth [,] s interior I	Crust and Mantle	Moho discontinuity, seismic ray theory	1995 Kobe earthquake. Travel-time data	Vp,Vs crust thickness
8	Earthquake II	Earthquake and focal mechanism	How to study the mechanism of earthquake	P-initial time and phase map of 1995 Kobe	Epi-center, P- arrival map exercise,	24	Earth [,] s interior II	Mantle and Core	P,S shadow zones	Jeffray's Bullen travel-time curve, seismograms	Fit travel-time to seismo-grams
9	Earthquake and fault	Relation with fault	Fault mechanism and earthquake	earthquake Fault experiment	Flour fault experiment	25	Pre-Plate tectonics	Ocean floor spreading, geomagnetic	Magnetic polar wandering, and ocean floor	"Red October" video, Basalts, Iron needles,	Basalt NRM, Ocean flour geo- magne model
10	Special lecture to all KVIS members at the auditorium	Lessons from 2011Tohoku, 1995Kobe	Disasters and human beings, Japanese cases	PPT lecture	Own-made tsunami			survey	geomagnetic anomaly	Dishes	
					simulations	26	Plate tectonics	Basics of plate tectonics	Subduction zone, mid ocean ridge and transform	Plate map, original transform fault	Paper model of transform fault, Zambia trip
	_	-	<1st ERS report>		_				faults	paper model,	video
11	Continental drift	Theory: birth and defeat	Evidences and drawbacks	Photos and maps	Continental drift map puzzle	27	Burgess biota	Missing lives, punctuated	My Burgess shale trip, and the	Burgess fauna resources,	watching videos "Its a wonderful
12	Sedimentary rocks	Classification	Particle sizes, compositions	Photos and samples	sedimentary rock quiz			evolution	meanings of Gould [·] s "Wonderful life"	Canadian Rockys video	life", my trip vid
13	Sedimentary structures	Characteristics	Turbidite, laminae, ripple marks, convolution, etc.	Photos and samples	Exercise on sedimentary structures	28	Mass extinction	P/T and K/T mass extinction	K/T asteroid impact theory	Alvarez paper (Science, 1980), PPT	Dinosaurs fossil site video
14	Geological structures	Characteristics	Unconformity, intrusion, faults	Photos and maps	Observation of photos	29	Early earth I	Hadean era	Origin of Moon,	South African	Old life
15	Geological principles	How to read geological profiles	Law of super- position, cross- cutting relationship	Photos and maps	Geological map quiz			and Giant Impact Theory	oceanic crust, life, BIF, Moon and life evolution	rocks, Barberton fieldtrip video	sandstone, BIF and gold ore. My video
16	Geo-history I	Fossils and Paleozoic era	index fossils, facies fossils, Paleozoic fauna and flora	Photos and Fusulina trilobite samples	Observation of fossil samples	30	Early earth II	Archean era and the Snow Ball Earth	Snow ball Earth, what, cause and evidences	Canada-Japan made video, my NY trip video	Watching "snow ball earth video"
17	Geo-history II	Fossils II, absolute ages and Meso-zoic	Radiometric dating, Mesozoic and Cenozoic fauna and	Ammonite samples,	Observation of fossil samples,	31	Climate changes I	Basics of Paleo-Climate	Climate proxy indexes	Photos and Vostok core data	Coloring graphs
18	Geo-history III	era Cenozoic era and ice ages	flora Human fossils, ice age remnants,	Exponential graphs South Africa trip photos and video	Watching videos and photos	32	Climate changes II	Global warming controversy	Skepticism and IPCC scientific basis	documents for controversy	Checking the both side documents

ERS Class Photos

Facies fossil vs. Index fossil

Absolute age and Radioactive decay

Thermal remnant magnetism (Basalt)

1-dimensional cellular automata

Geological structure puzzle

Miscellaneous

Misc. resources: left: example pages of final exam. Right: A classroom photo in September

In Thailand, there is the conscription system for male, however if the students take one month military training in high-school for three years, they got their draft exemption. In September 2017, they had school class only morning, in the afternoon, the boys went to military trainings by Bus and the girls took volunteer activities every day.

Conclusions

- L. Quests and exam scores suggest the ERS class at KVIS 2017 was successful as a whole.
- 2. Especially in the earthquake topic, students' motivation have improved due to practical trainings using various hand-made materials.
- 3. For the lack of natural disasters, problems still remain on disasters-based ERS teaching. 4. This experience need to be shared both in Thailand and Japan on ERS educational
- perspective.

References & Acknowledgements

Major References:

Okamoto Y. 2011: New 3Dseismicity maps using chorma-stereoscopy with two alternative freeware, 2011AGU FM Abstract. Okamoto Y. 2006: Controversy-Based Earthscience, GeosciEd V at Bayreuth, Germany, Abstract. Okamoto Y. 2003: A tiny fault model in a slide case using flour and cocoa -Faults or cookies?-, GeoSciEd III Calgary,

Canada, Abstracts All the above resources are in my web site http://yossi-okamoto.net/ Some materials are in the Seismological Society of Japan (SSJ) website: http://www.zisin.jp/publications/document04 04.html

(in Japanese) In addition, details my stay at KVIS are also shown at the above author's personal site. (in Japanese) **Acknowledgment:** Videos of each lecture were taken by CP Thai chemistry teacher (Dr. Janjira Maneesan), who always attended our class. Check

of attendance, exam scoring were all completed by her. Dr. Thanit Pewnim of KVIS Senior Adviser supervised the entire course. Dr. Myra Halpin of Senior Adviser of Chemistry checked English of the final exam. Dr. Thongchai Cheprecha, principal of KVIS, gave us extraordinary conveniences working at KVIS. Also, Dr. Norikazu Osumi, Professor Emeritus Kyoto University of Education, who once worked as the first Japanese visiting teacher at KVIS, gave us a lot of advise for teaching from his carrier in Thailand. Special thanks to these people. This study is partly supported by the **Shimonaka Science Fund 2017**. The lecture by the author will continue from August to September in 2018.

